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in connection with the construction of a refined theory of plates and shells by 
an asymptotic method [I- 61, the question of the plane problem of elasticity 

theory for a half-strip arises. In the asymptotic approach, the plate (shell) re- 
gion near the edge (or other perturbation lines) is singled out for special con- 

sideration. The state of stress of the boundary layer, which damps out rapidly 
with distance from the edge, must be taken into account to determine the state 
of stress in this region. The construction of the boundary layer [4 - S] reduces 

to an iteration process in each of whose steps the plane and antiplane problems 
of elasticity theory for a half-strip should be solved. In the first step it is hence 
necessary to solve homogeneous equations with homogeneous boundary condi- 

tions for the stresses on the longitudinal boundaries and with different conditions 

at the edge. At subsequent stages the solutions of the plane and antiplane prob- 

lems of elasticity theory for a half-strip for given volume forces and for given 
stresses on the longitudinal boundaries are required. 

The question of the necessary and sufficient conditions for the existence of 

damped solutions of the plane problem of elasticity theory for a half-strip with 
free longitudinal boundaries in the absence of volume forces is examined in [‘I]. 

An extension of the results in [7] to the case when volume forces act on the 
half-strip and stresses are given on the longitudinal boundaries is given below. 

1. Let us turn to the solution of the above-mentioned problem for a half-strip. We 
agree to consider quantities with the dimension of a length to be referred to the half- 

thickness h of a half-strip, and the volume forces to be referred to h-l. 
Let us consider the half-strip 0 < 2 ( 00, - 1 & y & 1 with the following con- 

ditions specified on the edge x E 0 : 

cc (09 Y) = fi (Y), oti (0, Y) = fa (Y) (problem 1) (1.1) 

21.LrJ (0, Y) = fi (Y), %u (0, Y) = fz (Y) (problem 2) (1.2) 

oz (09 Y) = fi (Y), 21Lv (0, Y) = fa (Y) (problem 3) (1.3) 

2F.u (0, Y) = f~ (Yh 2P.V (0, Y) = fz (Y) (problem 4) (1.4) 

As in [7], we examine the skew-symmetric and symmetric strains of the half-strip sepa- 

rately. The boundary conditions on the longitudinal boundaries for all four problems 
have the form 

Qx (57 1) = 671 (4, %u (x9 1) = gz (4 (1.5) 

Let us set up necessary and sufficient conditions imposed on the boundary functions 

fl (Y> al-xl fz (Y), P u on compliance with which the solution of the inhomogeneous Lami 
equations 

(A + %,) s + F$ + (5 + F1) -& = - r, (x* Y) (1.6) 
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Pg+(h+2Plg+(h+P)g&= - r&4 i4 

satisfying the given conditions (1.5) on the longitudinal boundaries will be damped out 
in the direction of the x-axis. 

We construct the damping solution of the problem for the boundary functions corre- 
sponding to the damping conditions. We assume with respect to the functions in the right 

sides of (1.5) and (1.6) that they damp out exponentially in the direction of the z-axis. 

We shall examine the solution of (1.6) in the class of damping functions. 
Let us use a Laplace ~~sformation in the variable x to construct the solution to{ 1.6). 

We set 

u@,Y)=~u(r,y)s-%2x, V(p,y)=~o(2,y)e-s=ds (1.7) 

and we obtain an inhomogkeous system of ordinary equatizns for u (p, Y) and V (p, 

yJ : 
(h+2~~)PLUi_p~~(h+I,l)*‘~=~(P, Y) (1.8) 

~p~V+(h+2~)~+(h+~)P~=y(p,Y) 

@b Y) = - Rx(P*Y) tO,(O,Y)+P~lx,+(h+z~)pc(O,y) 

y iP7 Y) = -~~@rY)+(isrr10,Y)+h~/*,t~~u(O,Yf 

Here & (P, yh & (P, Y) are the transforms of r, (0, g), r, (0, Y). 
The general solution of (1.8) is 

U (P, Y) = a, @) sin py + a2 (p) COS PY + (1.9) 
as (p) Py cos py + a4 (p) py sin py + UO (P9 9) 

v (p, y) = (- a2 (.P) - Xl% @N sin PY + 
(ar (p) - *us (P)) cm PY -I- % @) PY cxis PY - 
a3 (p) py sin py + VO (p, y) 

where u, (PI Y), v, (P, Y) is a particular solution of (1.9). Here 

Us (P, Y) = bl (P, Y) sin PY + b2 (P, $1 03s PY + (1.10) 

bs @, Y) py cos PY + b4 (P, Y) PY sin PY 

vo (p, y) = (- b2 cp7 Y) - xlb4 (p, y)) sin Py + (4 (P, Y) - 
& @, Y)) cos PY + b4 @, Y> PY ~0s PY - ba (p, y) PY sin PY 

u 

h(p, y,=$\ IY(P? Y)PYCOSPY + (1.11) 
VI 

Q ($4 y) (XI COS py - PY sin Pa 4Y 

bz(pt Y) =$ s 
I- Wb y}pys~npY - 

Ile 

Q 0-b y) h sin PY + PY cos PyN dy 
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sin PY + @ (P, Y) 03s PYI dY 

b4 (P, Y) = $ \ [--- y (P, Y) ~0s PY + @ (P, Y) sin wl dy 
WI 

h-C3p 
X1=hfCL, ic= n+cl- 

2P (A + 2P) 

We express the stresses in conditions (1.5) in terms of the displacements and apply a 

baplace transform. We obtain 

- I& (OJ) + APU (P, 1) + (h + 34 g ( = Gr (P) (1.12) 
Y==l 

Here G (~1, GZ (P) are transforms of the functions g, (z) and 6% (z). 

2, bet us first consider skew-symmetric strain of the half-strip. Then Us (p), U4 (p) 
in (1.9) equal zero, and yl = - 1 and y, = 0 in (1.11). Determining al (p), a3 (p) 
from (1.12), we obtain 

a1 (P) = & {k 6 (P) + Au (OJ)) (11 p ~0s P + p sin P) + (2.1) 

~(G~(~)+hv(O,1))(~sinp--pcosp)+ 

pb2 (P, 1) (& + sin’ p) + @4 (P, 4) ( ‘&+$’ + PI)) 

a3 (P) = ~{~(G~(~)~~~(O,~))cos~+~(Gg(p)+~~(O,~))x 

sin P + pba t.P, 1) + pbr(P9 1) (+ + cc@ P)} 

cp (P) = sin p cos p - p 

The transforms GI (p), G2 (p), R, (JJ, Y), R, (p, y) of the given functions and the 

quantities U (0, y), u (0, y), a, (0, y), a, (0, Y) enter into the expressions for 

77 (P, Y) and V (p, y) . Among these latter, two quantities are known for each of the 

four problems (1.1) - (1.4) from the boundary conditions on the butt, while the other two 
are unknown. The question of their determination will be examined later. 

The functions U (p, Y), V (p, Y) can have singularities in the roots of the equation 

CJ (p) = 0 in the complex p plane and at the singular points G (P), G2 (P), 

Rx (I-J, ~1, R, @, d-s ince the functions gl (z), ga (z), r, (z, Y), r,, (z, Y) damp 
out exponentially in the x direction, then their transforms have no singularities at the ori- 
gin and in the right half-plane. 

Equation cp (p) =0 has a third order root at the origin p = 0 and an infinite set of 
four first order complex roots p,,, jjn, - j&, - pn (n = 1, 2 ,. . .). 

Since u (5, y), v (5, y) are in the class of damped functions, then their transforms 
should have no singularities in the right half-plane including the imaginary axis. For 
this it is necessary and sufficient that the residues U (p, y) ePx, V @, Y)e”” vanish 
relative to the poles p,,, P,, with positive real part, and relative to the pole p = 0 
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The residues ?J (p, 2) epx, V (p, x)epx relative to the pole p = pn are 

respn u(P, 3)ePx = 2P s~azP (F (PA + H (~4) k (p,, Y) ePnX 
12 

n 

respTL V (p, N epx = 
where 

2p 
rl 

synnl p (F (Pn) + If (Pn)) g (Pnv Y> ePnX n 

(2.2) 

F(Pd= ~ro,(oY ~)~tP~, Y)f%t& ~~g(p~, T4-k 
(2.3) 

2P.u COP Y) s (Pm ?/I+ 2w (0, y) t (Pm y)1 &I 

H (pa) = - * [cm pn 5 g, (2~) e-q5 dz + sin p%[gs (z) 8”+*xdz] - 

0 0 

i [h (P,, Y) f r, (3, Y) ewpnx a~: + g (p,, .tO f 5 (2% Y) e-Pnxdx] dg 

h~;,!+PYc:sPY+(~- 

a 

cm2 p 
) 

sin py 

61 (P, Y) = PY sin pg + (* + fd p) ~0s pi4 

s b, Y) = P (PY cos PY + (1 + sinspI sin p@ 

t (P, y) = p (PY sin PY - sin2 p cm PY) 

The residues U (p, y) zjpx, V (p, y) @” relative to tfie Pole p = 0 are ( “1 

respzo UePx = - 
II( 

3x2+ ; -- - w ye) A~ + 2xA2 a_ A”] y i 2.4) 

respXoVePx = 
[ 
x2 - 6W-l-8y) + 35 

5++w 5th+w Y’) xAr + 

( 
x2 + _L+_L 

A,+ 2P g2) AZ + Asx + A4 

1 

Al-;..__ h+2yt 

w&+CL) (S 
%i#t Y)&Y-- 

) 
0 

The quantities a, p, y, 6 are defined in terms of the given values gX (z), gz (3); 

*) A mistake in the expressions for the residues U @, y)ePx, V @, y)e*% relative to the 

PO&p= fj is made in [7] : the coefficients for A it As were not written down com- 

pletely, which did not affect the subsequent results. 
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r, (3, Y), r, (2, Y) by the formulas 
co 

U= j (Pl(4 + 5ryb YVY)dX 
0 

119 

(2.5) 

s = S[- Q?,(x) + g2 (4 + )wx (X? Y) - Xrv(X, YWY-p 
h-?-2P O” 

y = 4@+PL) s {( 
-&+x2) $!1(4- %e4+ 

0 

([- 2w-&:, Y> + (yy + --%+d~ Y)]&+~ 
h+2P 

0 

6 
h-k% m 

= 2@+ PL) s I( 
35 + 41r; 

-w+ 3 La? 
) 
@?l(C Y)$ 

0 

( 

3h+4P 
3 (A + 2P) 

-+a(& Y) +S[(-x2+$;$) Y”)%(W+ 
0 

( 

_ 4(h.+P) + 
A+@ 

-&a+ -L Ya) zry (z, Y)] dY] ax 
h+2P 

It follows from (2.2), (2.4) that for the residues U (p, Y) ePXd v (p, Y) t?‘” relative 
to the poles with positive real part and relative to the pole p = 0 to vanish, it is neces- 

sary and sufficient to comply with the conditions 

F (PA + H (P,) = 0 (n = i, 2,. . .I (2.6) 
A i = 0 (i=l;2,3, 4) (2.7) 

The system of conditions (2.7) can be represented in the form 
1 

s %u(O, Y) dY = a (2.3) 

lYO,(O. Y)dY = P (2.9) 
0 

l 1 
h 

4(hfP) 
\Y%X& Y) dY + 2P\YU(O, Y)dY = Y 
0 0 

(2.10) 

1 

3h+4P, 
6@+1r) 

\Y3%(0, Y)dY +2& --?I”) U~O, Y>dY = 6 (2.11) 
0 0 

For each of the four problems (1.1) - (1.4). the system of conditions (2.6),(2.8) - 
(2.11) permits determination of those of the quantities u (0, y), u (0, y), (T, (0, g), 
U, (0, Y) which are unknown from the boundary conditions at z = 0, and obtaining 

two conditions imposed on the boundary functions which are necessary and sufficient for 
the existence of the damped solution. 

To pass to the transforms U Cp, Y), V Cp, Y) in (2.1) to the originals u (5, Y), 
u (z, Y) , let us represent U (p, Y), V (p, y) of the sum of two components 
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u (p, y) = U(l) (J-h Y) t ma) (P, Y), v 0, Y) = V’) (p, y) + va (P, Y) (20 12) 

The components U(r) (p, y), V(l) (p, y) correspond to transforms for the displacements 

in the half-strip in the absence of volume forces and stresses on the longitudinal bound- 

aries. Transforms of the volume forces and stresses at y = f 1 enter into the terms 

U(s) (P, Y), V2) (P? Y) * 
We use the inversion theorem to find the originals for U(l) (p, y), V(l) (p, y) and 

the convolution theorem, the inversion theorem, and the theorem on integration with ce- 
spect to a parameter for U (s) (p, y), V@) (p, y) . We consequently obtain 

(2.13) 

lJ tz, 9) = il C”* (- Pnv 2, Y) + u* (-- Pm 27 Y)) 

u” (-- Pm 27 Y) = 
X+P 1 

4~ (A + W P, sin2 P, 
[F (- p,) cpnx + K (-- Pm q1 h (Pn 24 

u* (-- Pnv $7 Y) = 
k+P 1 

* (A + .W P, sin2 pn 
[F (- pn) e-pnx + K (- Pm a g (Pm Y> 

The values of F (- p,,) ace given in (2.3) and for K (- p,,, LIT) we have 

K(-Pp,, x)= s^{+g4 - ~0s PHI (8 + sin Pdb CC)) - (2.14) 

i I-- h (P,, .2/j rI6 Y) + g (pm9 Y) r~ (E9 HI dy} e-p+E)dE 
0 

The expressions (2.13) for the displacments still contain unknown quantities which en- 

ter into F (- pn) and F (- Pn). We examine the question of determining them 

and of setting up the damping conditions for each of the problems (1.1) - (1.4). 
We have two damping conditions for problem 1 from (1. l), (2.8) and (2.9) : 

Sfa(Hdy = U? Slloydy = f3 (2.15) 
0 0 

The values of a,, $ ace given in (2.5)‘ The conditions obtained ace Static in natwe . 

They can be obtained from the equiiibcium conditions for a half-strip subjected to all the 

effects applied to it. 
The system of conditions (2.10),(2.11) and (2.6) is used to determine the unknowns 

u (0, Y), n (0, Y) in the solution (2.13). The method of determining these quantities 

from the system of conditions mentioned is given in [7]. 
We have two damping conditions for problem 2 from (1.2) and (2.3), (2.16) 

1 

s 
fabh&~=a, ,(,:,,Sf,(y~~~dy+Sf,(y)ydy=l 

(2.16) 

0 0 0 

only the first of these conditions can be obtained from the static equilibrium conditions 

for a half-strip. 
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The system of conditions (2.9), (2.11) and (2.6) permits determination of the ur’&noWnS 

0% (0; Y), v (0, Y) H owever, their determination can be avoided in co~~ct~g the 
damped solution of the problem in the case under consideration Sims? the sys@m Of con- 

ditions (2.6) permits elimination of cr, (0, y), u (0, y) from the solution (2.W In 
fact, we have from (2.3) 

F(--Pn)=E[ - 0, (0, ?f) h (P,, Y) + ox@ (0, Y) g (PFV Y) + (2.17) 

Qru (0, &(pn, Y) - 2P(O* Y) t (P?l, Y)f &J 

Adding the quantity F (p,,) + H @,), which equals zero according to (2.6), to the 

right side of (2.17), we obtain an expression for F (- pn) in terms of quantities known 

from the conditions (1.2) at x = 0 

F(-&A)= 2~152(y)g(P*,yf+fl(~)s@,,~}ldy$H(PD) (2.18) 
0 

We have two damping conditions for problem 3 from (1.3) and (2.9),(2.11) 
1 

s 

1 

0 

fdYw-b =P* ~~~~~-~~1~~~~2~~ f~(~-~qfn(y)&== * 12.19) 

0 0 

Only one of these is static in nature. The system of conditions (2.6) permits eIimination 

of the unknowns u (0, y), crxy (0, y) f ram the solution (2.13). It can be found that 

w-Pn)= - 2 s Vl (y) fa (Pm y) + f2 (3) t (Pm y)] dy - H(p*) (2.20) 
0 

The u~ow~ a, (0, y), Q, (0, Y) for problem 4 enter into all the conditio~(2.6), 
(2.8) - (2.11). Without determining them it is impossible to obtain either the solution 

of the problem or the damping conditions. 

Hence, o, (0, y), a, (0, y) should first be determined from conditions (2.6), (2.8), 

(2.9). (The method to determine them is given in [7] ( *)) , Afterwards, we obtain the 
two damping conditions imposed on the boundary functions fs (y), fs (9) from (2.10) 

and (2.11). 

3. Let us consider the symmetric strain of a half-strip. Then a, @), ua (p) are 
zero in (1.9). while y, = 0, ys = -- 1 in (1.11). Determining a2 (p), a, 03) from 

(1.12), we obtain 

aa( &{-+- FL(P)+ Wh ~))(~~~~P-P~osP)~ 

&(G~(P)+~~(O, *))(~cosp+psinp)- (3.9 

PbllPt 1) (j& + ma P) + pbs (P9 1) ( ~(g.$) + P2)) 

Q(P) = ~{~(G~@)+~~(O,~))si~p- 

*) There is a misprint in formula (4.2) for Q, (Y) in [7]. It should be considered that 
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$ (G2 (P) -I- Ia (O,W cos P + 

pb,(p,I)+pb,@,I)(-~+cOSaP)} 

v (P) = sin p cos p + p 

The equation v (p) = 0 has a first order root at the origin and an infinite set of four 

complex first order roots pnt 13,, + &, - pn. In conformity with this, U fp, y) 
has a second order pole at p = 0 and a first order pole and complex roots of the equa- 

tion tp (p) = 0, and V (p, y) is a simple pole in all the roots of the equation 9 (p)-- 0. 

Equating the residues u (j?, y) e’%, V (p, y) ep” relative to the poles prt with posi- 
tive real part to zero, we have the system of conditions 

F @n) + H (pla) = 0 tn = 1,~. . .) (3.2) 
Wilt% 

F (p,) = i D&c (0, y) fa (Pw y) + %I (0, y) g (h y) + 

$u (0: Y) s (Pm y) + 2clv (07 yrt (pm y)l dy 

H(p,),=-- ~~~.~p,Sgl(x)e-~~~~x-G~p~~g2~x~e-~~%~]- 

1 

S[MPm y&As, y) 

0 0 

eePmX dx + g (p,, y) f r, (5, y) e+n” dx] dy 
0 0 0 

Wp9y)=wWw- * ( + COS2 P)coS PY 

g (PI Y) = - py 03s py + (-& -I- sin2 p) sin py 

s (P, Y) = p (pi4 sin PY - (1 + ~2 P) cos py) 
t (p, y) = p (- py cos py - cos2 p sin py) 

Equating the residues U @, y)tF, V (p, y) epX relative to the pole p = 0 to zero, 
we obtain the two conditions 

5() Cr.$ 0, y dy = a (3.3) 

0 

R 1 

z@+CL) 
sIN(oIy)y4+2~~Y(o,Y)dY=B (3.4) 

0 0 

Here m 

a= 1 [g&) + \r, (G Y) dy]dz 
0 0 

Let us turn to the construction of the damped solution for a half-strip. As in the case 
of the skew-symmetric strains, we represent U @, y), V (p, y) as the sumoftwoterms, 

the first of which are transforms for the displacements in the absence of volume forces and 
stresses on the longitudinal boundaries, and the second contain transforms of the volume 
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forces and stresses at x = f 1. We use the inversion theorem to find the originals cor- 

responding to the first term. we use the convolution theorem, the inversion theorem, and 
the theorem on integration with respect to a parameter to construct the originals for the 

second terms, We consequently obtain 

u (X9 Y) = & (U* (- Pnr % Y) + u* (- Fn9 29 Y)) (3.5) 

0 @, Y) = jjI V (- Pm ? y) + v* (- A, 27 y)) 

u* (- Pm x9 y) = 
i+p 1 - 

9 G + 2P) Pn co8 Pn 
[F (- pn) FPnX + K (- Pm 41 h(Pm y) 

v* (- pm 2, Y) = 

AfP 1 - 
*@+w) P,(=@P, 

[P (- p*) CnX + K (- Pm 41 g (Pm y) 

K(-_p,,z)=~{ kf+f - @in Pa (E) + cos Pa (0) - 
0 

Let us examine the question of the damping conditions for problems (1.1) - (1.4). We 
obtain the damping condition for problem 1 from (1.1) and (3.3) 

1 

s oAw~ = a 

This condition is obtained from the static equilibrium conditions for a half-strip. Con- 

ditions (3.2),(3.4) are used to determine the unknowns u (0, y), v (0, y) in (3.5). 
(The method is indicated in [‘I]). 

We have the damping condition 

for problem ‘2 from (I. 2) and (3.4). 
The system of conditions (3.2) permits elimination of the unknowns u (0, ~),a, (0, y) 

in the expression for F (- p,,) from the solution (3.5). We consequently obtain 

w-P*)=- 2 5 [fz (y) g (Pm y) + fl (y) s (pm Y)] dy - H (pn) 
0 

For problem 3 we obtain the same damping condition from (1.3) and (3.3) as forprob- 
lem 1. The system of conditions (3.2) permits elimination of the unknowns u (0, y), 
0, (0, y) from the solution (3.5). In this case we have for F (- pn) 

F (-- Pn) = 2 i ffl (Y) h (pm Y> + fz (Y) t (Pm y)l dy + H (p,) 
0 
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For problem 4 the unknowns 0, (0, g), as (0, y) enter into all the conditions(3.2)- 
(3.5) and into the solution (3.5). The system of conditions (3.3), (3.2) permits determ- 
ination of the unknowns 5, (0, y), oXt, (0, y). F rom (3.4) we afterwards obtain the con- 
dition imposed on the function fi (y), which it is necessary and sufficient to satisfy in or- 
der for the damping solution to exist. 
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